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1. Introduction 

 
The Earth looks like a sphere, but exactly speaking, it is a spheroid of a 

radius of 6,378 km(equator) and 6,357 km(polar) covered by an atmosphere 
and oceans. The atmospheric pressure above the ground is approximately 
1atm wherever of the surface of the Earth. The oceans cover 70% of the 
Earth’s surface and their mean depth is 3.8 km. Of course, they are basic 
assumptions in meteorology and oceanography.  
However, it is necessary to understand the reason that atmosphere 

environment is in such a condition when the global environment in the 
future is considered. In other words, a viewpoint that whole global 
environment as a system is necessary. The knowledge about the real Earth 
is so empirical that the characteristics of the Earth being sphere are difficult 
to see. 
If the Earth is not a sphere, the global environment will greatly different 

from real atmospheric and oceanic environment. The characteristics of the 
Earth being sphere will become clear by comparing the real and imaginary 
environment. 
In this commentary, we consider the phenomena of the atmosphere and 

oceans when the Earth is cube to clarify the characteristics of the real Earth. 
 
 

 
 
 
 

Notice 
This article is a commentary text of the movie "If the Earth shape is cube". 
Numerical values in this article are partly different from numerals used in 
the movie, because models dealt with are different between the article and 
the movie. However, the difference is small. 
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2. Introduction to the cubic Earth 

 
What kind of the cubic Earth should be studied? Since the cubic Earth is an 

imaginary planet, arbitrary size of cubic Earth is possible to imagine. Here, 
let's introduce a cubic Earth which is similar to the real Earth as much as 
possible. 
The circumference of the equator of the real Earth is 40,000 km. Taking 

this size into consideration, we introduce a cubic Earth with the length of 
10,000 km. The volume of this cube is 1012km3. On the other hand, the radius 
of the real Earth is approximately 6,400 km, so that its volume is  

4
3
π × 6400km( )3 =1.098×1012 km3  

The volume of the cubic Earth is slightly smaller than the real Earth. 
We place the cubic Earth at the location of the real Earth in the solar 

system. In other words, the cubic Earth rotates around the sun 150,000,000 
km apart from the sun with a period of 365 days. The axis makes 23.4 
degrees from the normal of the orbit plane in the same way as the real Earth, 
and spins with a period of approximately 24 hours (exactly speaking, 23 
hours 56 minutes). 
In the case of the real Earth, rotation axis is the same anywhere, but in the 

case of the cubic Earth, the global environment is different by a position of 
the rotation axis. 
Figure 1 shows the two cases of symmetric rotation axis. The environment 

of the cubic Earth greatly changes whether a pole is located in the central 
square or at the top of the square. We assume here that a pole is located in 
the central of the square (Figure 1(a)). In addition, we assume that the 
density inside of the cubic Earth is constant and its mass is same with that 
of the real Earth. 
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Figure 1: Position of the rotation axis of the cubic Earth (bold vertical line).  
 (a) Pole in the center of the square 
 (b) Pole at the top of the square 
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3. Gravitational field of the cubic Earth 

 
3.1 Consideration about the gravitational field 
 Gravity pulls things toward the center of the Earth (Figure 2). Magnitude of 
the gravity depends on the distance from the center of the Earth. In the case 
of the real Earth, the distance from the center of the Earth is constant 
almost everywhere on the Earth's surface (Figure 2(a)), so the magnitude of 
the gravitational force is almost same. (More precisely, the force varies 
slightly depending on latitude, because the Earth is ellipsoid.) Taking the 
magnitude of gravity on the vertical axis and taking the distance measured 
along the surface on the horizontal axis, the graph is as shown in Figure 3(a). 
That is, the value anywhere on the Earth's surface is equal. And the 
direction of the gravity is directly below to the horizontal plane. So, it is 
substantially normal to the Earth's surface.  
 On the other hand, in the case of the cubic Earth, because the distance from 
the center of the Earth varies depending on the location, the gravity changes 
as shown in Figure 3(b) (More precise discussion, see Section 3.3). And the 
direction of gravity is not normal to the ground surface as shown in Figure 
2(b). In particular, the corner of the cubic Earth is like a steep mountain. 
Around the summit of Mount Fuji, the ground surface is inclined about 30 
degrees with respect to the horizontal plane. “The Red Fuji” in the prints of 
Katsushika Hokusai exaggerates the angle of the Mt. Fuji so that the angle 
near the summit is 53 degrees. In contrast, the angle around the corner of 
the cubic Earth is 45 degrees. It would be to look like a ridge of the steep 
mountain. 
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               (a)                                  (b) 
 
Figure 2: How gravity attracts an object toward the center of the Earth. 
 (a) Real Earth. 
 (b) Cubic Earth. 
 

       
Figure 3: Distribution of the magnitude of the gravity at the surface. 
 (a) Real Earth.  
 (b) Cubic Earth. 
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3.2 The law of universal gravitation 
 In general, gravity consists of the centrifugal force due to spinning of the 
Earth and universal gravitation due to the mass of the Earth. 
 A universal gravitation is the force of material mass M  and mass m  at a 
distance r  pulling each other. The force F  is 

F = γ mM
r2

                                (1) 

The unit of force is Newton [N], where γ  is the universal gravitational 
constant. This law was discovered by English physicist I. Newton in 1665. 
 Here, m  is the mass of the object that are present on the surface of the 
Earth, and M  is the mass of the Earth. In the case that the Earth has 
spherical symmetry, its universal gravitation is the same as universal 
gravitation when all mass of the Earth gathers at the centrosphere (Gauss' 
law). Therefore, equation (1) can be applied to the gravity acting on the 
object on the Earth, by using the distance r  between the object and the 
center of the Earth.  
 Gravity is found to be proportional to the mass m  of the object. So, putting 

g = γ M
r2

                                 (2) 

gravity acting on the object is given by mg , where g  is called gravitational 
acceleration. The g  at the Earth's surface is a constant that does not 
depend on m  (See Figure 3(a)). The gravitational acceleration at the surface 
of the Earth, assuming that r = RE  (Earth radius is about 6,400 km), is 
approximately 9.80 m/s2. Going to the sky from the Earth's surface, the 
gravitational acceleration is reduced because r  increases. 
 As a convention, the distribution of gr  is used instead of the distribution of 
the magnitude of the gravitational acceleration. gr is called the 
gravitational potential. In the graph of gr , the gradient dgr dr  is the 
gravitational acceleration. 
The law of universal gravitation resembles the electrostatic Coulomb's law 

in electricity closely. Gravitational acceleration corresponds to the electric 
field, and gravitational potential corresponds to the electrical potential. An 
isosurface of the gravitational potential corresponding to the equipotential 
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surface is called geoid. Form of sea surface which covers the surface of the 
Earth is a geoid. 
 In the real Earth, when you release a heavy object from your hand, the 
object falls downward. This holds true everywhere on the surface of the 
Earth. It is because the surface of the Earth is almost a geoid. The 
magnitude of the gravitational acceleration is also a similar value anywhere 
on the same sea level. Such property is established because the Earth is 
almost a sphere. In the case of cubic Earth, direction and magnitude of the 
gravitational acceleration varies greatly by location on the surface. 
 
3.3 Gravity on the cubic Earth 
 Obtaining the gravity at the surface of the cubic Earth is a difficult problem 
compared with obtaining the gravity of the Earth with a spherical symmetry. 
Let ρ  the density of the Earth and PG  the gravitational potential of a point 
of the Earth's surface that is made by a small part of the Earth's interior (its 
volume is dxdydz ). PG is given as shown in Figure 4. 

                          
PG = γ ρdxdydz

r
                            (3)  

 

 
Figure 4: How to determine the gravitational potential of the cubic Earth 
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To calculate the gravitational potential of the whole cubic Earth, it is 
necessary to sum up the gravitational potential that is made by a small part 
of the cubic Earth's interior. Gravitational potential at the center of the 
square surface of the cubic Earth can be calculated analytically because of 
the symmetry. Figure 5(a) is a vertical distribution of gravitational potential 
calculated analytically. Gravitational acceleration at the center of the 
surface of the cubic Earth is larger than 5% of the real Earth. In addition, 
the acceleration due to gravity decreases with altitude. Fig.5b is a same 
graph that is plotted in log-log scale. If the graph plot is in a straight line, it 
would indicate that the power law of r . Because it is almost linear, it is 
shown that the law of inverse square is satisfied approximately. 
 

 
 
Figure 5: Vertical distribution of the gravitational acceleration at the center 
of the surface of one of the cubic Earth. The vertical axis indicates the 
gravitational acceleration with the unit of 1 to 9.80 m/s2. The horizontal axis 
indicates the distance from the center of the cube with the unit of 5000 km. 
Law of inverse square is satisfied approximately. 
 (a) normal plot.  
 (b) log-log plot.  
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 Figure 6(a) is the numerical result of the distribution of the gravitational 
potential at the surface of the cubic Earth. It is shown that the gravitational 
potential is largest at the center and reduces toward the periphery of the 
square. This indicates that the direction of gravity is not normal to the 
square plane. And if the gravitational potential is in the spherical symmetry 
as the real Earth, gravitational potential lines should be in a circle. But the 
results that it slightly distorted from a circle. This distortion is the effect of 
the shape. However, it would be thought approximately as circles. In other 
words, the distribution of gravity is very similar to the case of the real Earth. 
Figure 6(b) is a contour line of the gravitational potential in the 1/4 of the 
cross section obtained by bisecting the middle of the side of the cubic Earth. 
Also in this figure, the gravitational potential is distributed approximately 
spherical. So, let the distribution of gravity of the cubic Earth be considered 
approximately same as the real one. 

 

Figure 6: Gravitational potential distribution of the cubic Earth. Numerical 
unit is J/kg.  
 (a) distribution at the square surface.  
 (b) distribution in the area of the 1/4 in the cross section bisected so as to 
pass through the center of the side of the cubic Earth. The gray area 
represents the cubic Earth's interior. 
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3.4 Distribution of gravitational potential at the surface of the cubic Earth 
 The geoid is a horizontal plane for human. In other words, the surface of the 
real Earth is spherical, but we feel it as if the horizontal plane surface. 
Similarly, the horizontal plane is spherical in the case of cubic Earth. 
Therefore, we feel the surface of the cubic Earth concave. Figure 7 shows the 
vertical distribution relative to some gravitational potential surface in the 
two sections of the cubic Earth (Assuming a geoid of the Earth). 

 
Figure 7: vertical distribution relative to the equal gravitational potential 
surface. (Assuming a geoid of the Earth at a equal gravitational potential 
surface that is represented by the spherical surface in the top diagram.) 
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4. The atmosphere and the ocean that cover the cubic Earth 

 
4.1 Assumptions 
 The atmosphere and the ocean cover the surface of the Earth. The 
atmosphere covers the entire Earth. The ocean covers about 70% of the 
Earth's surface. This is why the Earth is called the water planet.  
If the cubic Earth has the same amount of the atmosphere and the ocean 

with the real Earth, how do they cover the surface? We consider the 
existence form of the atmosphere and the ocean on the cubic Earth under the 
following assumptions. 
  
 Assumption1: The total amount of sea water is present on one side. 
Assumption2: The total amount of air is equally distributed on all six sides. 

 
 The total amount of air= 5.1×1018kg  
 The total amount of seawater =1.35×109km3  
 
4.2 Form of the ocean 
 The seawater can be treated as incompressible fluid approximately. So, we 
assume that the same volume of the seawater as the real Earth is present in 
the cubic Earth. The form of sea level is a geoid. Because it is approximated 
by a spherical geoid, seawater piles up in the form of a convex lens on the 
center of the square (Figure 8).  

 
Figure 8: Seawater piled up in the form of a convex lens on the center of the 
square 
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Let L the radius of the convex lens, H the thickness of the convex lens, then 
the volume V is given approximately by 

 

V = π R2 − x2( )dx
R−H

R

∫
= πR2H − π

3
x3⎡⎣ ⎤⎦R−H

R

= πR2H − π
3
R3 − R3 − 3R2H + 3RH 2 + H 3( )( )

= π RH 2 − 1
3
H 3⎛

⎝⎜
⎞
⎠⎟

V ≈ πRH 2

          (4) 

The coordinates are shown in Figure 12. R is the distance (approximated as 
part of the spherical surface) from the center of the Earth to the surface of 
the sea.  
Firstly, let us consider the thickness H. The volume of the ocean 
1.35 ×109km3 is substituted into equation (4), and R = 5,000 km as a first 
approximation of R = 5,000 km + H, then 

1.35×109km3 = 3.14 × 5000km ×H 2

→ H 2 = 1.35×10
9km3

3.14 × 5000km
= 0.086 ×106km2

→ H = 0.29 ×103km=290km

 

Next, R = 5,290 km as the second approximation, then 

1.35 ×109km3 = 3.14 × 5290km × H 2

→ H 2 = 1.35 ×10
9km3

3.14 × 5290km
= 0.081×106km2

→ H = 0.29 ×103km=285km

 

 Secondly, let us consider the radius L.  

 R2 = L2 + R −H( )2

L2 = 2RH −H 2
                             (5) 

is satisfied, then 

 L2 = 2 × 5285km × 285km-285km × 285km

→ L = 2931225km=1712km
  

is obtained. A cross-sectional view of the ocean is shown in Figure 9.  
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Figure 9:  A cross-sectional view of the ocean. 
 
The area ratio of ocean to the side surface is  

π ×17122 100002 = 0.092 

It is only to cover the 9.2% of one side surface. 
 
4.3 Atmosphere on the side without the ocean 
4.3.1 Relationship between the surface pressure and the total amount of air 
 Pressure is expressed as a height of mercury. Let Vm  the total amount of 
the mercury, and RE the radius of the Earth, then  

Vm = 0.76m × 4πRE
2

= 0.76m × 4 × 3.14 × 6400000m( )2

= 3.91×1014m3

 

Assuming that it is equally distributed on each side of the cubic Earth, the 
volume of the atmosphere on one side is 

 1
6
Vm = 6.52 ×1013m3                          (6) 

 Let us discuss how the atmosphere piles up on the side without the ocean. 
The atmosphere piles up in a convex lens as well as the ocean. We use a 
coordinate system with an origin at the center of a square. The z-axis is 
taken vertically upward and the x-axis is taken in the direction 
perpendicular to the direction of the vertical axis (z-axis) as shown in Figure 
10. Note that the ground surface is different from the plane defined by z = 0 
in this coordinate system.  
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Figure 10: Coordinate system to investigate the atmospheric layer. The 

z-axis is taken in the direction of the gravity. 
 
 Vertical distribution of pressure along the z-axis is written as 

 h z( ) = h0 exp − z
Ha

⎛
⎝⎜

⎞
⎠⎟

                         (7) 

Pressure is given as a height of mercury h z( ) . h0 = h 0( )  in (7) corresponds to 
the surface pressure in the deepest layer. Ha  is a constant (with dimension 
of length) called the scale height. Ha  will be explained in the next section. 
The atmospheric pressure decreases exponentially with altitude. It is 
considered that by giving the total amount of the air, to determine the h0 . To 
do that, surface pressure is integrated along the square surface. If x z( )  is 
the altitude of the ground in Figure 10, 

x2 + R − z( )2 = R2                          (8) 

holds because of the spherical surface on x. R is the radius of the sphere. 
When z << R , we obtain 

z = x2

2R
                                (9) 

Spherical surface near the origin will be approximated to be a paraboloid. By 
substituting equation (7) to (9), the surface pressure is obtained. 

h x( ) = h0 exp − x2

2RHa

⎛
⎝⎜

⎞
⎠⎟

                        (10) 

The total amount of the air that piles up on the surface of a square is 
obtained by integrating the surface pressure. Paraboloid away from the 
origin becomes poor approximation, but the pressure also reduces with 
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distance from the origin, so that the contribution of the integral is small. 
Therefore, it is expected that the paraboloid gives a good approximation. 
With the same reason, integration range can be extended to infinity. Thus,  

1
6
Vm = h x( )2π xdx

0

∞
∫

= 2πh0 xexp − x2

2RHa

⎛
⎝⎜

⎞
⎠⎟
dx

0

∞
∫

= 2πh0 −RHa exp − x2

2RHa

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥
0

∞

= 2πh0RHa

                  (11) 

h0  (surface pressure at the center of the face) depends on the Ha . 
 
4.3.2 Scale height 
 Scale height Ha  represents the thickness of the atmosphere. It is obtained 
from the equation of hydrostatic equilibrium:  

dp
dz

= −ρg                            (12) 

and the equation of state of gas: 
p = ρRgT                             (13) 

where ρ is the density of air at altitude z. And Rg is the gas constant, T is 
temperatures (with unit K). If T is constant, the result is  

 ( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−= z

TR
gpzp
g

exp0                      (14) 

The scale height is given by 

Ha =
RgT
g

                            (15). 

By substituting Rg = 287 m/(K s2), T = 300 K, and g  = 9.8 m/s2 

 Ha =
287m2s−2K−1 × 300K

9.8ms−2
= 8786m                 (16)  

Note that the scale height is the altitude that the pressure becomes 1 / e of 
the surface pressure. T = 300K is tentative, because the temperature 
distribution of the cubic Earth is unknown at this stage. 
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4.3.3 Surface pressure and pressure distribution  
 It is possible to estimate the surface pressure (h0 ), if the scale height Ha is 
given. The result is 

 
h0 =

Vm
12πRHa

= 3.91×1014m3

12π × 5.285×106m ×8786m
= 223m

               (17) 

It means that the surface pressure in the deepest part of the atmosphere is 
equivalent to 223 m of the mercury, i.e., 294 atm. The vertical distribution of 
pressure is  

( )

( )

( ) matm294ln8786

m8786
atm294lnln

atm
m8786

exp294

zp
z

zzp

zzp

=→

−=→

⎟
⎠
⎞⎜

⎝
⎛−=

                     (18) 

  
                  Altitude at 1atm  z = 49.9 km 
                  Altitude at 0.5atm z = 56.0 km 
                  Karman line      z = 171 km 
 
Karman line is the altitude that the atmospheric pressure is 10-6 atm. It is 
regarded as the boundary between the atmosphere and the space. 
 The horizontal distribution of the pressure is obtained from the equation 
(9). 
 
      Radius at 1atm           x = 2Rz = 2 × 5.285×103 × 49.4km=726km  
      Radius at 0.5atm          x = 2Rz = 2 × 5.285 ×103 × 56.0km=769km 
      Radius of the Karman line x = 2Rz = 2 × 5.285 ×103 ×171km=1340km 
 
 In summary, the altitudes where the pressures are 1 atm and 0.5 atm are 
49.9 km and 56.0 km, respectively. The radii that surface pressures become  
1 atm and 0.5 atm are 769 km and 726 km from the center of the square, 
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respectively as shown in Figure 11. 
 The atmosphere on the cubic Earth is quite different from that on the real 
Earth. In the real Earth, the surface pressure is 1 atm anywhere at sea level. 
On the other hand, in the case of the cubic Earth, the pressure is 294 atm at 
the center of the square. The pressure decreases with distance from the 
center, being 1 atm at about 730 km away from the center. The more distant 
from there, the pressure is further reduced. It is 0.5 atm at about 770 km, 
and away from it, the air becomes thinner and thinner. Since the gas 
expands without limit, some air molecules are present at the edge of a 
square, but it should be regarded as vacuum. We can live in the atmospheric 
pressure between 0.5 atm and 1 atm, we can live in the circular belt of about 
40 km width away 730 km from the center on the cubic Earth without the 
ocean. The area is called the habitable zone.  

 

Figure 11: Cross-sectional view of the atmosphere 
 
4.4 Atmosphere on the side with the ocean 
 In the center of the side where there is the ocean, the ocean is in the form of 
convex lens. The atmosphere piled on. The atmospheric pressure at sea level 
is the same everywhere. The mass of air covered over the land is very small 
compared to the mass of the atmosphere over the oceans. Therefore, the 
mass of the atmosphere is approximated by the mass of the air over the 
ocean. 
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 The surface area of the sea is given by 

 surface area of convex lens = 2πR2 sinθ dθ = −2πR2 cosθ[ ]
0

α

∫ 0

α
= 2πR2 1− cosα( ) (19) 

with the symbols shown in Figure 12. Since R = 5,000 km + 285 km = 5,285 
km and cosα = 5,000/5,285 = 0.9461, 

area of convex lens = 2π × 5285km( )2 1− 0.9461( ) = 9.46 ×106km3       (20) 

The height of mercury column that piles up on it is  
( ) ( )

m89.6
m1046.9m1052.6 212313

=
×÷×=

÷= areasurfacemercuryofvolumeh
                     (21) 

The surface pressure is 
( ) atm07.9atmm76.0m89.6 =÷                      (22) 

By substituting 9.07atm to p0  in equation (14), the vertical distribution of 
atmospheric pressure is obtained as 

( )

( )

( ) matm07.9ln8786

m8786
atm07.9lnln

atm
m8786

exp07.9

zp
z

zzp

zzp

=→

−=→

⎟
⎠
⎞⎜

⎝
⎛−=

                      (23) 

         Altitude at 1 atm           ( ) 19.4kmm107.9ln8786 =×=z  
Altitude at 0.5 atm         ( ) 25.5kmm5.007.9ln8786 =×=z  
Altitude of the Karman line ( ) 141kmm1007.9ln8786 6 =×= −z  
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Figure 12: The definitions of the symbols 

 
The surface pressure depends on the distance from the coast line. 

        Distance for 1 atm 

  ( ) 59.1km1712km-km50004.195285 22 =−+=→ x  

Distance for 0.5 atm 

( ) 77.2km1712km-km50005.255285 22 =−+=→ x  

Distance of Karman line 

( ) 395km1712km-km50001415285 22 =−+=→ x  

 
Figure 14 shows the vertical cross-section of the atmosphere and the ocean. 
The habitable zone is a circular belt with a 20 km width located distance of 
approximately 60 km distant from the coastline. 
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Figure 13: Relationship of horizontal distance and altitude 

 

 
Figure 14: Cross-section of the atmosphere in certain aspects of the sea 

Insolation 
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5. Insolation 

 
5.1 Angle of sunlight 
The cubic Earth revolves at an angle 23.4 degrees to the ecliptic plane as 

shown in Figure 15. Therefore, the angle of sunlight varies with the seasons. 
If the direction of the rotation axis is fixed, the direction in which the coming 
of the sun's rays changes depending on the season as shown in Figure 16. 

 

Figure 15: The cubic Earth revolves at an angle 23.4 degrees to the ecliptic 
plane. Seasonal change occurs for this. 

 
Figure 16: If the axis of rotation is fixed, the direction of the sun's rays is 
changed depending on the season. 
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5.2 Amount of the solar energy given on the side plane 
 Energy flux of the solar radiation given to the Earth is expressed as [(the 
projected area of the Earth)×(solar constant)]. The solar constant S0 = 1,370 
W/m2 is energy flux of the solar radiation through unit area [1 m2] at the 
outer boundary of the atmosphere. The projected area of the Earth is the 
area of the Earth's shadow projected on a screen placed behind of the Earth 
perpendicular to the sun's rays. If the Earth is spherical, the projected area 
is given by πRE2 , independent of the time and season, where RE  is the 
radius of the Earth.  
 In the case of the cubic Earth, the projected area varies depending on the 
time and season. In order to know its properties, it is necessary to determine 
the projected area. Before considering the whole cubic Earth, let us calculate 
the projected area of each surface of the cubic Earth. 
 To calculate the projected area of the plane without the poles, we consider 
only a square unit area is in the universe, rotating about the spin axis of the 
central portion of the side surface as shown in Figure 17. 

 
Figure 17: We consider a square ABCD which is a side of the cubic Earth 
rotating around an axis in the center of the square. The length of one side of 
the square is unit long. The rotation axis is inclined by an angle α to the 
sun's rays. The square makes an angle ωt for the direction of the sunlight. 
Figure 18 shows the plan and elevation of the configuration. 
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 Let t the time elapsed from the time of sunrise, and ω the angular velocity 
of the rotation of the square. Figure 17 shows ωt which is the angle between 
the square and the sun's rays. Area of shaded elevation view of Figure 17 is 
the projected area of the square. This area D0 is given in 

tD ωα sincos0 ×=                            (24) 
Since one side is in the square of 10,000 km, the projected area D is 

28 km10sincos ××= tD ωα                        (25) 
Flux of the solar radiation through unit area [1 m2] of this surface is 

tSS ωα sincos0 ×=                           (26) 
 

 

Figure 18: Plan view, elevation view, side view that has been defined in 
Figure 17 
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5.3 Amount of the solar energy given on the polar plane 
 The polar plane (surface that has a pole) also rotates, so the projected shape 
varies. However, if α is fixed, the projected area does not depend on ωt. As 
shown in Figure 19 the projected area D of D0 with an arbitrary shape is 
given by 

αsin0DD =                              (27) 
The projected area of the pole surface with the unit area is given by equation 
(27) and does not dependent on time. 

 
Figure 19: Relationship between D0 and D 

 
Figure 20: Diurnal variations of the side plane. Graphs correspond to 
numbers on the side of the cube in the upper right insert. 
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5.4 Amount of the solar energy given on the cubic Earth 
 Sunlight is always shining on the three surfaces of the cubic Earth: side 
planes and a polar plane. Projected area Dcube is the sum of the projected 
area of the three planes as shown in Figure 20. 
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 The second term corresponds to the projected area of side planes. They vary 
as shown in Figure 21. Average area under the 24 hour period is given by 
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So, projected area of daily mean is given by  
( ) ( )αα cos273.1sinkm10 28 ×+×=meandailyDcube              (30) 

 
Figure 21: Time variation of the projected area of the side planes. It is 
normalized by 108 km2 × cosα. 
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 Let us compare the projected area in the winter solstice (= 23.4 degrees) and 
in the Spring Equinox (= 0 degree). 

Projected area of the winter solstice = 108km2 (sin 23.4 +1.273cos 23.4) 
= 108 km2 (0.40 + 1.273×0.92) = 1.57×108 km2 

   Projected area of the Spring Equinox = 1.27×108 km2 
The average of these two values gives approximately annual average of the 
projected area of the cubic Earth. That is, approximately, 

Projected area of the annual average = 1.42×108 km2. 
On the other hand, if the projected area of the Earth is a sphere with a 
radius RE (= 6,400 km),  

πRE
2 = π × 0.642 ×108 km2 =1.29 ×108 km2 , 

the projected area is approximately equal to the projected area of the Spring 
Equinox of the cubic Earth. The annual average of the projected area of the 
cubic Earth is larger than the annual average of the spherical Earth. 
 
5.5 Seasonal variation and diurnal variation of solar radiation 
5.5.1 Seasonal changes of solar radiation in the polar plane 
 Atmosphere of the Earth is heated by solar radiation. The intensity shows 
seasonal variation, because the rotating axis is tilted. As shown in Figure 16, 
if the Earth's axis is fixed in the vertical direction, the direction of the 
sunlight changes with the seasons. Unlike spherical Earth, in the case of the 
cubic Earth, insolation characteristics of polar face and side surface are quite 
different. In the polar face, there is no alternation of day and night with the 
period of 24 hours. Six months in the daytime, and rest of the year is night. 
The year insolation changes as shown in Figure 22. 

 
Figure 22: Seasonal changes in solar radiation in the polar plane 
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5.5.2 Seasonal changes of solar radiation in the side plane 
 Day and night are both 12 hours regardless of latitudes and seasons on the 
side surface of the cubic Earth. Diurnal change of solar radiation is shown in 
Figure 23. Smax (the maximum amount of solar radiation) depends on the 
season. The maximum value of Smax is 1370W/m2 and is observed in Spring 
Equinox and the Autumn Equinox. The daily average is 436 W/m2, which is 
smaller than the maximum value in the polar surface. The minimum value is 
400 W/m2 and is observed in winter solstice or summer solstice. The seasonal 
average is 418 W/m2. The seasonal variation of the daily average amount of 
solar radiation is shown in Figure 24. 

 
Figure 23: Diurnal change of solar radiation in the side plane 

 
Figure 24: Seasonal changes in the average daily amount of solar radiation 
in the side plane 
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6. The surface temperature of the cubic Earth 

 
6.1 Radiative equilibrium 
 We feel warm in a sunny spot in a cold winter day. It is because the solar 
radiation has a power to heat objects. However, if the object continues to 
absorb solar radiation, the temperature rises without limit. In fact, the 
energy escapes in the form of infrared rays whose intensity is a function of 
temperature. This phenomenon is known as “thermal radiation”. When 
thermal radiation energy escaping from the object becomes equal to the solar 
radiation energy, the temperature of the object falls into a steady state. This 
state is known as “radiative equilibrium state”. The surface temperature of 
the cubic Earth is also determined by radiative equilibrium state.  
 In the real Earth, there is no region where land is in contact with the 
universe like the surface of the moon. On the other hand, the atmosphere 
covers only a part of the surface of the cubic Earth. In the first step, let us 
determine the temperature at the periphery of the square where there is no 
atmosphere and ocean. 
 
6.2 Seasonal changes of the surface temperatures of the polar surface 
without the atmosphere 
 When the Earth's surface is heated by the solar radiation, heat penetrates 
into the interior of the Earth. The temperature change is described by the 
equation of heat conduction in the vertical direction. 
 The equation of the heat conduction can be written as  
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with a z-axis as the vertical upward direction, where t is time, T is  
temperature, ρc is volume heat capacity of the rock, and κ is thermal 
conductivity of the rock. Heat balance of the Earth's surface can be written 
as 
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where Ts is surface temperature, S is solar constant, A is reflectivity of the 
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cubic Earth, and f t( )  is cosine of the angle of sunlight. σ is a constant of 
the Stefan-Boltzmann’s law.  

 Seasonal variation of the surface temperature was calculated with 
constants: 
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 The result is shown in Figure 25. The upper figure shows seasonal change 
of the temperature at the surface of the polar square. As expected from 
movement of the sun (see section 5.5), there is no diurnal variation. After the 
middle of the midnight sun (approximately 100 day from the vernal equinox), 
the temperature reaches to the maximum (275 K (2 ℃)), after that and 
reaches to the minimum (155 K (-118℃)) at the end of the polar night. We 
can live in the season with solar radiation, but in the polar night, the polar 
square is no longer a place where human can live.  
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Figure 25: Time change of the surface temperature of the ground without the 
atmosphere. Above: the polar surface, below: side surface 
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6.3 Seasonal changes of the surface temperatures at the ground of the side 
square without the atmosphere 
The seasonal change of the surface temperatures of the side square without 

the atmosphere is shown in the lower part of Figure 25. Unlike the real 
Earth, the seasons have a period of six months. The amplitude of the diurnal 
change is greater than the amplitude of the seasonal variation. It can be said 
that the side surface is in a temperature range in which we can live 
throughout the year, because its maximum temperature is about 290 K and 
the lowest temperature is about 253 K. The averaged temperature is slightly 
larger than radiative equilibrium temperature of the real Earth (255 K 
(-18 ℃)). 
 Temperature calculated here is the radiative equilibrium temperature of a 
surface without the atmosphere, the same result can be applied to a place 
with a thin air. The climate in the area between 800 km to 1,000 km away 
from the center of the center of the square will be close to the tropical climate 
of the real Earth. 
 
6.4 Vertical distribution of temperature on the side square with an 
atmosphere without the ocean 
 The temperature is considered to be substantially constant along a 
geopotential surface. In other words, the isothermal surface covers the cubic 
Earth in a dome shape. As a result, the pressure and temperature also 
decrease gradually toward the periphery from the center of the square. This 
is like mountains in the real Earth where atmospheric pressure and 
temperature also decrease gradually.  
 Figure 26 shows the relationship between horizontal distance (distance 
from the center of the square) and altitude. A place at 1,000 km from the 
center of the cubic Earth corresponds to an altitude of 100 km above the 
center. 
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Figure 26: relationship between horizontal distance and altitude 

 
 Figure 27 shows a vertical distribution of the pressure at the center of the 
square when the scale height is assumed to be 8,786 m (*). Figure 28 shows 
relationship of horizontal distance and surface pressure. It indicates that the 
atmospheric pressure is reduced when going outward from the center of the 
square. Figure29 shows an enlarged view of the same graph where 
atmospheric pressure is close to 1 atm at 700 km away from the center. 
(*): In the following, the surface pressure is calculated at 310 atm that was originally supposed instead of 294 atm. 

However, there is no qualitative difference in the results. 

 
Figure 27: Vertical distribution of atmospheric pressure 
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Figure 28: Relationship between the horizontal distance and the surface 
pressure 

 
Figure 29: Relationship between the horizontal distance and the surface 
pressure (Enlarged view of Figure 28 around 1 atmosphere) 
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 Atmospheric temperatures depend on the amount of water vapor contained 
in the atmosphere. Water vapor is the most important greenhouse gas in the 
present Earth. Water vapor content determines the extent of the greenhouse 
effect. We calculated the temperature distribution subject to the effect of 
water vapor under following assumptions: 
 
1. There is no wavelength dependency of the greenhouse gases for emitting 
thermal radiations. 
2. Sunlight is absorbed only at the surface of the cubic Earth. 
3. The emission rays can be approximated vertical directions (two-stream 
approximation). In other words, non-uniformity and the temperature 
difference in the horizontal direction is ignored. 
4. Absorption coefficient of the radiation is constant. The 
pressure-dependence of the absorption coefficients is ignored. 
5. Ratio of water vapor to the dry air is constant, assuming there is no source 
of water vapor such as the sea. In addition, it is assumed that the amount of 
water vapor in 1 atm is the same with that of the atmosphere of the real 
Earth. For example, amount of water vapor in the atmosphere of 100 atm is 
100 times greater than that in the atmosphere of the real Earth. 
6. Albedo is assumed to be This is due to the fact that the atmosphere is 
covered by clouds, as described below. Radiative equilibrium temperature is 
201 K. 
 
 The result is shown in Figure 30. Surface temperature at the center of the 
square is 1,210 K. Temperature decreases almost linearly with height. This 
decrease rate is close to the dry adiabatic lapse rate. In the lower layer, the 
temperature lapse rate is 8.3 K / km.  
Figure 31 shows the distribution of surface temperature along the equal 

gravity potential surface. Isotherms at the land surface distribute in the 
forms of concentric circles.  
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Figure 30: Vertical distribution of temperature 

 

 
Figure 31: Relationship with the distance from the center of the square and 
the ground temperature 



 38 

6.5 Formation of clouds 
 Clouds play a important role in the Earth environment. They are; 
 
  1. Cloud amount controls albedo. 
  2. Clouds give influences to temperature through the process of  
     greenhouse effect. 
  3. Clouds heat upper atmosphere by releasing latent heat. 
  4. Clouds produce precipitation on lands and sustain life on lands. 
 
How do these effects work on the cubic Earth? Understanding these 
processes will help us to understand atmospheric phenomena on the real 
Earth. 
 Can we see clouds in the sky of the cubic Earth? Figure 32 compares the 
water vapor pressure of the air on the cubic Earth with saturated water 
vapor pressure as a function of altitude. The water vapor decreases with 
altitude. The saturated water vapor pressure also decreases with altitude 
due to the temperature decrease. The water vapor is saturated at the height 
of 215 km. There is a cloud bottom at this altitude. The temperature at this 
altitude is about 300 K. Clouds cover in the form of a dome in the central 
region of a square. Clouds touch the ground at a place 1,100 km apart from 
the center of the square. Probably, the ground outside of this area is covered 
with fogs. 
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Figure 32: Vertical distribution of the amount of water vapor in the 
atmosphere (indicated by water vapor pressure) and saturated water vapor 
pressure. 

 
Figure 33: Vertical distribution of temperature in the altitude range 
corresponding to Figure 32. 


